Working in the tidyverse

Writing files to Google Sheets

This requires authorization, hopefully the Oauth token can be auto-refreshed.

# write this to Google Sheets 
pacman::p_load(googlesheets4, googledrive)
# if want to write multiple sheets
my_df <- list(df_name1 = df1, df_name2 = df2)
ss4 <- googlesheets4::gs4_create(
  "SHEET NAME",
  sheets = my_df
)

Removing empty tibble from a list of tibbles

Filter(nrow, my_list)

# or if list of lists
Filter(length, my_list)

Converting named list to dataframe keeping column with the names

This is using the data.table package

# named list
ll <- mtcars %>%
    group_by(cyl) %>%
    group_map(~ head(.x, 1L)) %>% 
  set_names(c("Mazda", "Honda", "Suzuki"))
ll
## $Mazda
## # A tibble: 1 × 10
##     mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  22.8   108    93  3.85  2.32  18.6     1     1     4     1
## 
## $Honda
## # A tibble: 1 × 10
##     mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1    21   160   110   3.9  2.62  16.5     0     1     4     4
## 
## $Suzuki
## # A tibble: 1 × 10
##     mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  18.7   360   175  3.15  3.44  17.0     0     0     3     2
data.table::rbindlist(ll, idcol = 'make') %>% tibble()
## # A tibble: 3 × 11
##   make     mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
##   <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda   22.8   108    93  3.85  2.32  18.6     1     1     4     1
## 2 Honda   21     160   110  3.9   2.62  16.5     0     1     4     4
## 3 Suzuki  18.7   360   175  3.15  3.44  17.0     0     0     3     2

Using setNames to change column names

names <- c("name1", "name2", "name3", "name4")

df <- tibble(
  a = sample(letters, 4),
  b = sample(1:100, 4),
  c = sample(1:100, 4),
  d = sample(letters, 4)
)

df %>% setNames(names)
## # A tibble: 4 × 4
##   name1 name2 name3 name4
##   <chr> <int> <int> <chr>
## 1 o        43    89 o    
## 2 i         1    54 i    
## 3 l        95    36 y    
## 4 d        34     6 n

Renaming columns via pipe

The rename_with() function is very helpful…

df <- tibble(
  a_1 = sample(letters, 4),
  b_2 = sample(1:100, 4),
  c_3 = sample(1:100, 4),
  d_4 = sample(letters, 4)
)

df |> 
  rename_with(~ gsub("\\_.*", "", .) , .cols = everything()) |> 
  rename_with(~ paste0(., "_24"), .cols = everything())
## # A tibble: 4 × 4
##   a_24   b_24  c_24 d_24 
##   <chr> <int> <int> <chr>
## 1 p        46    66 d    
## 2 n         1     7 r    
## 3 u        10    25 s    
## 4 g        60    40 n

Using map to create named lists

fn <- function(x) {
  paste0('test-',x)
}
input <- LETTERS[1:3]
input %>% set_names() %>% map(fn)
## $A
## [1] "test-A"
## 
## $B
## [1] "test-B"
## 
## $C
## [1] "test-C"

Using rename_with to rename specific columns

Occasionally, you’ll only want to rename certain columns and the rename_with function offers this capability.

df <- tibble(
  maa_1 = sample(letters, 4),
  maa_2 = sample(1:100, 4),
  ma_3 = sample(1:100, 4),
  ma_4 = sample(letters, 4)
)

df %>% 
  rename_with(~str_replace_all(., "maa", "ma"), contains("maa"))
## # A tibble: 4 × 4
##   ma_1   ma_2  ma_3 ma_4 
##   <chr> <int> <int> <chr>
## 1 r        93    44 k    
## 2 v        28    58 g    
## 3 o        80    81 s    
## 4 q        42     1 u

piping and dplyr verbs with lists and purrr

Assume a list with data.frames and I want to use a dplyr verb (or apply any function) within it

list_object %>% 
  map(~ clean_names(.)) %>% 
  map(~ mutate(., new_var = colA + colB))

Mutate and Summarise multiple columns

This is well documented here, but a few examples are below. When using across() with we need to wrap the variables in quotes if we’re mentioning multiple. And if we’re using multiple functions they need to be put into a list(). To keep tabs on the results, name the function output.

mtcars %>%
  group_by(cyl) %>%
  summarise(across(c("disp", "drat", "mpg"), list(mean = mean, sd = sd)))
## # A tibble: 3 × 7
##     cyl disp_mean disp_sd drat_mean drat_sd mpg_mean mpg_sd
##   <dbl>     <dbl>   <dbl>     <dbl>   <dbl>    <dbl>  <dbl>
## 1     4      105.    26.9      4.07   0.365     26.7   4.51
## 2     6      183.    41.6      3.59   0.476     19.7   1.45
## 3     8      353.    67.8      3.23   0.372     15.1   2.56

The helper functions for select() are also useful for selecting variables. Though note that when using helpers such as contains() that you can only include one string. For instance, this will work.

mtcars %>% 
  summarise(across(contains("ar"), mean))
##     gear   carb
## 1 3.6875 2.8125

But this won’t

mtcars %>%
  summarise(across(contains("ar|mp"), mean))
## data frame with 0 columns and 1 row

If you want to match across multiple strings, the matches() function will do the trick.

mtcars %>%
  summarise(across(matches("ar|mp"), mean))
##        mpg   gear   carb
## 1 20.09062 3.6875 2.8125

Multiple left_joins using dplyr

It’s always possible to use multiple left_join functions, but the easiest way to do merge multiple data sets together may be to put everything into a list and then use the Reduce function. I had used map to work over a lot of data, so everything was in a list. I then took the data I wanted to use as my base and concatenated it to the list.

tmp <- c(list(df), original_list)

Then, using dplyr commands was able to join all of the data. In this case, my original list had 30 separate dataframes.

mass_df <- tmp %>% Reduce(function(df1, df2), left_join(df1, df2), .)

The left_join command can be further defined to specify what we’re joining by, or to select only specific columns that will be joined.

# using "matches" to pull out specific variables
mass_df <- tmp %>% 
  Reduce(function(df1, df2), left_join(df1, select(df2, matches("avar|bvar"))), .)
# specifying what the join is by
mass_df <- tmp %>% Reduce(function(df1, df2), left_join(df1, df2, by = "index"), .)

Calculating quantiles in tidy fashion

pacman::p_load(tidyverse)
# set up quantiles we want 
p <- c(.2, .4, .6, .8)
# create list of functions; one for each quantile; and give names to each
p_names <- map_chr(p, ~paste0('p_',.x*100))

p_funs <- map(p, ~partial(quantile, probs = .x, na.rm = TRUE)) %>%
  set_names(nm = p_names)

mtcars %>% group_by(cyl) %>% 
  summarise(across(mpg, tibble::lst(!!!p_funs))) %>% 
  janitor::clean_names()
## # A tibble: 3 × 5
##     cyl mpg_p_20 mpg_p_40 mpg_p_60 mpg_p_80
##   <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
## 1     4     22.8     24.4     27.3     30.4
## 2     6     18.3     19.4     20.5     21  
## 3     8     13.9     15.0     15.4     16.8

Selection of multiple variables

When using either select() or wanting to mutate(across()) there are lots of helpers – starts_with(), ends_with(), contains(), and matches() and probably some that I’m missing.

contains() only works on a single, specific request, whereas matches() allows for an OR.

tmp <- tibble(g1_letters = sample(letters, 5), 
              g1_num = sample(1:600000, 5),
              g2_letters = sample(letters, 5),
              g2_num = sample(1:60000, 5),
              h1_letters = sample(letters, 5),
              h1_num = sample(1:60000, 5))

# or statement
tmp <- tmp %>% select(matches("g1|h1"))
tmp
## # A tibble: 5 × 4
##   g1_letters g1_num h1_letters h1_num
##   <chr>       <int> <chr>       <int>
## 1 h           91961 l            5263
## 2 f           95551 q           58515
## 3 n          203957 a            2203
## 4 t          118099 r           46583
## 5 j           54905 k           39347

But we can also use the intersect() function to create an AND statement

tmp <- tibble(g1_letters = sample(letters, 5), 
              g1_num = sample(1:600000, 5),
              g1_weighted = g1_num*.4,
              g2_letters = sample(letters, 5),
              g2_num = sample(1:60000, 5),
              g2_weighted = g2_num*.4,
              h1_letters = sample(letters, 5),
              h1_num = sample(1:60000, 5),
              h1_weighted = h1_num*.4)

tmp %>% 
  summarise(across(matches("num|weighted"), sum)) %>%
  mutate(across(intersect(starts_with("g1"), contains("weighted")), 
            ~ paste0(., "---->")))
## # A tibble: 1 × 6
##    g1_num g1_weighted   g2_num g2_weighted h1_num h1_weighted
##     <int> <chr>          <int>       <dbl>  <int>       <dbl>
## 1 1278472 511388.8----> 185276      74110. 150962      60385.

Piping into a t.test

tibble(a = c(rnorm(100, mean = 50, sd = 5),rnorm(100, mean = 60, sd = 5)),
       group = c(rep("green", 100), rep("blue", 100))) %>%
  t.test(a ~ group, data = ., var.equal = TRUE)
## 
## 	Two Sample t-test
## 
## data:  a by group
## t = 11.788, df = 198, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group blue and group green is not equal to 0
## 95 percent confidence interval:
##   7.394397 10.365370
## sample estimates:
##  mean in group blue mean in group green 
##            59.16839            50.28851

Piping into a cor.test

Method 1 (no group_by)

Using the exposition pipe from the magrittr package.

library(magrittr)
mtcars %$%
  cor.test(mpg, hp) %>% 
  broom::tidy()
## # A tibble: 1 × 8
##   estimate statistic     p.value parameter conf.low conf.high method alternative
##      <dbl>     <dbl>       <dbl>     <int>    <dbl>     <dbl> <chr>  <chr>      
## 1   -0.776     -6.74 0.000000179        30   -0.885    -0.586 Pears… two.sided

Method 2 (allows group_by)

Using a nest-map-unnest workflow:

mtcars %>% 
  nest(data = -cyl) %>% 
  mutate(test = map(data, ~ cor.test(.x$mpg, .x$hp)), # S3 list-col
    tidied = map(test, broom::tidy)
  ) %>% 
  unnest(tidied)
## # A tibble: 3 × 11
##     cyl data     test    estimate statistic p.value parameter conf.low conf.high
##   <dbl> <list>   <list>     <dbl>     <dbl>   <dbl>     <int>    <dbl>     <dbl>
## 1     6 <tibble> <htest>   -0.127    -0.286  0.786          5   -0.803     0.692
## 2     4 <tibble> <htest>   -0.524    -1.84   0.0984         9   -0.855     0.111
## 3     8 <tibble> <htest>   -0.284    -1.02   0.326         12   -0.708     0.291
## # ℹ 2 more variables: method <chr>, alternative <chr>

Arranging within a group

library(tidyverse)
ToothGrowth %>%
    group_by(supp) %>%
    arrange(len, .by_group = TRUE)
## # A tibble: 60 × 3
## # Groups:   supp [2]
##      len supp   dose
##    <dbl> <fct> <dbl>
##  1   8.2 OJ      0.5
##  2   9.4 OJ      0.5
##  3   9.7 OJ      0.5
##  4   9.7 OJ      0.5
##  5  10   OJ      0.5
##  6  14.5 OJ      0.5
##  7  14.5 OJ      1  
##  8  15.2 OJ      0.5
##  9  16.5 OJ      0.5
## 10  17.6 OJ      0.5
## # ℹ 50 more rows

Using cross and map to paste

The cross() function is similar to expand.grid. Here, we create a list and use map to paste it together where each in a separate list.

data <- list(qq = "Q",
             q = 1:4,
             hyphen = "-",
             yr = 13:19)

data %>%
  cross() %>%
  map(lift(paste0)) %>% 
  head()
## [[1]]
## [1] "Q1-13"
## 
## [[2]]
## [1] "Q2-13"
## 
## [[3]]
## [1] "Q3-13"
## 
## [[4]]
## [1] "Q4-13"
## 
## [[5]]
## [1] "Q1-14"
## 
## [[6]]
## [1] "Q2-14"

But we can use setNames and then reduce put it into a data.frame.

data <- list(qq = "Q",
             q = 1:4,
             hyphen = "-",
             yr = 13:19)

data %>%
  cross() %>%
  map(lift(paste0)) %>% 
  map(setNames, c("QTR")) %>% 
  reduce(bind_rows) %>%
  head()
## # A tibble: 6 × 1
##   QTR  
##   <chr>
## 1 Q1-13
## 2 Q2-13
## 3 Q3-13
## 4 Q4-13
## 5 Q1-14
## 6 Q2-14

Group indices

Assume we have a tibble like so

tibble(letter = rep(letters[1:2], each = 6),
       state = c(rep(c(state.abb[c(1,4,5)]), each = 2),
                 rep(c(state.abb[c(25,38,43)]), each = 2)))
## # A tibble: 12 × 2
##    letter state
##    <chr>  <chr>
##  1 a      AL   
##  2 a      AL   
##  3 a      AR   
##  4 a      AR   
##  5 a      CA   
##  6 a      CA   
##  7 b      MO   
##  8 b      MO   
##  9 b      PA   
## 10 b      PA   
## 11 b      TX   
## 12 b      TX

and we want to create a group index for each letter. A simple way of doing this is to use factor conversion.

tibble(letter = rep(letters[1:2], each = 6),
       state = c(rep(c(state.abb[c(1,4,5)]), each = 2),
                 rep(c(state.abb[c(25,38,43)]), each = 2))) |> 
  mutate(id = as.integer(as.factor(letter)))
## # A tibble: 12 × 3
##    letter state    id
##    <chr>  <chr> <int>
##  1 a      AL        1
##  2 a      AL        1
##  3 a      AR        1
##  4 a      AR        1
##  5 a      CA        1
##  6 a      CA        1
##  7 b      MO        2
##  8 b      MO        2
##  9 b      PA        2
## 10 b      PA        2
## 11 b      TX        2
## 12 b      TX        2

Group indices within nested groups

Assume we have a data set with a nested group structures like so.

tibble(letter = rep(letters[1:2], each = 6),
       state = c(rep(c(state.abb[c(1,4,5)]), each = 2),
                 rep(c(state.abb[c(25,38,43)]), each = 2)))
## # A tibble: 12 × 2
##    letter state
##    <chr>  <chr>
##  1 a      AL   
##  2 a      AL   
##  3 a      AR   
##  4 a      AR   
##  5 a      CA   
##  6 a      CA   
##  7 b      MO   
##  8 b      MO   
##  9 b      PA   
## 10 b      PA   
## 11 b      TX   
## 12 b      TX

Our goal is to produce a repeating id for each state within each letter group, so that AL, AR, and CA would be 1, 2, 3 and MO, PA, and TX would also be 1, 2, 3.

But using the group_indices() function doesn’t help us here (note I’m suppressing warnings because I have no idea how to use group_by() first with this function).

tibble(letter = rep(letters[1:2], each = 6),
       state = c(rep(c(state.abb[c(1,4,5)]), each = 2),
                 rep(c(state.abb[c(25,38,43)]), each = 2))) %>%
  mutate(id1 = suppressWarnings(group_indices(., letter)),
         id2 = suppressWarnings(group_indices(., state)))
## # A tibble: 12 × 4
##    letter state   id1   id2
##    <chr>  <chr> <int> <int>
##  1 a      AL        1     1
##  2 a      AL        1     1
##  3 a      AR        1     2
##  4 a      AR        1     2
##  5 a      CA        1     3
##  6 a      CA        1     3
##  7 b      MO        2     4
##  8 b      MO        2     4
##  9 b      PA        2     5
## 10 b      PA        2     5
## 11 b      TX        2     6
## 12 b      TX        2     6

But we can get to what we want by using cumsum and !duplicated

tibble(letter = rep(letters[1:2], each = 6),
       state = c(rep(c(state.abb[c(1,4,5)]), each = 2),
                 rep(c(state.abb[c(25,38,43)]), each = 2))) %>%
  group_by(letter) %>%
  mutate(id = cumsum(!duplicated(state)))
## # A tibble: 12 × 3
## # Groups:   letter [2]
##    letter state    id
##    <chr>  <chr> <int>
##  1 a      AL        1
##  2 a      AL        1
##  3 a      AR        2
##  4 a      AR        2
##  5 a      CA        3
##  6 a      CA        3
##  7 b      MO        1
##  8 b      MO        1
##  9 b      PA        2
## 10 b      PA        2
## 11 b      TX        3
## 12 b      TX        3

Normalize function

This has nothing to do with the tidyverse, but just want to put it here

norm <- function(x) (x - min(x)) / (max(x) - min(x))
Taylor Grant
Taylor Grant
Group Director, Strategy & Analytics
Previous

Related